
dxflib

Programmer's Guide

Author: Andrew Mustun
Copyright 2004-2005 RibbonSoft, Inc.
All Rights Reserved.
Release: March 2005

1

Contents

1 Overview 2

2 Compiling dxflib 3
Unix / Linux 3
Windows 3

3 Reading DXF Files 4
Implementing the Creation Interface 4

4 Writing DXF Files 6
Creating the Writer Object 6
Writing the DXF Header 6

Opening the DXF Header 6

Storing Additional Variables 7

Closing the Header 7

Writing the Tables Section 7
Opening the Tables Section 7

Writing the Viewports 8

Writing the Linetypes 8

Writing the Layers 8

Writing Various Other Tables 9

Writing Dimension Styles 9

Writing Block Records 10

Ending the Tables Section 10

Writing the Blocks Section 10
Writing the Entities Section 10
Writing the Objects Section 11
Ending and Closing the File 11

5 Appendix 12
Bibliography 12

6 Index 13

2

Chapter 1

Overview

dxflib is a C++ library for reading and writing DXF files. When reading DXF files,
dxflib parses the file and calls functions that you define in your own C++ class for
adding entities, layers, ..

Please note that dxflib does not store any entities or other information for you. It
only passes the supported entities and other objects found in the DXF file to your
C++ class.

Using dxflib to read DXF files doesn't require any knowlege of the DXF format.
However, it's still an advantage to know the basics about entities, attributes, layers
and blocks. To write DXF files with dxflib you definitely need an idea of how a DXF
file is organized.

dxflib does not depend on any exotic other libraries, just the standard C / C++
libraries.

3

Chapter 2

Compiling dxflib

Unix / Linux
Under Unix and Linux Systems, compiling dxflib is a simple standard procedure:

./configure
make

This creates the file './lib/dxflib.a' . To compile a dynamic version of dxflib, run
'make shared' instead of 'make' . This will create the file './lib/libdxf.so.2.0.x.x' and
the link './lib/libdxf.so' that points to './lib/libdxf.so.2.0.x.x' .

Instead of running 'make install', you can also copy the header files into a header
directory of your choice and copy the library files into a library directory of your
choice.

Windows
There are many different ways to compile dxflib under Windows. You can use
Microsoft's Visual C++ compiler, Borland's C++ command line tools, gcc and
many other compilers.
For this manual, only the process of compiling dxflib using cygwin [CYGWIN] and
the gcc compiler from the MinGW32 package is shown:

./configure
MinGW32-make

4

Chapter 3

Reading DXF Files

Figure 1: dxflib parses DXF files and calls functions in your class. In those
functions you can for example add the entities to a vector or list of entities.

Implementing the Creation Interface
Your C++ class that handles DXF entities has to be derived from
DL_CreationInterface or DL_CreationAdapter. In most cases DL_CreationAdapter
is more convenient because it doesn't force you to implement all functions.

class MyDxfFilter : public DL_CreationAdapter {
 virtual void addLine(const DL_LineData& d);
 ...
}

The implementation of the functions in your class will typically add the entities to
a container of entities or use the information in another way.

void MyDxfFilter::addLine(const DL_LineData& d) {
 std::cout << "Line: " << d.x1 << "/" << d.y1
 << " " << d.x2 << "/" << d.y2 << std::endl;
}

Reading DXF Files

5

When reading a DXF file you simply pass on a reference to an object of your class
to the parser.

MyDxfFilter f;
DL_Dxf dxf;
if (!dxf.in("drawing.dxf", &f)) {
 std::cerr << "drawing.dxf could not be opened.\n";
}

6

Chapter 4

Writing DXF Files

To write a DXF file, you need to wrap the entities, layers, blocks, .. you have into
the wrapper classes of dxflib. Since dxflib does not store any entities, you need to
iterate through your entities and call the write functions for each of them. Please
note that you have to stick to the exact order in which you call the write functions
of dxflib. Otherwise your DXF file will not be standard conform.

Creating the Writer Object
To create a DXF writer object you need to specify the file name as well as the DXF
version you want to produce. At the time of writing only two DXF versions were
supported: R12 and DXF 2000/2002. The dxflib codes for DXF version R12 is
DL_Codes::AC1009 and for DXF 2000/2002 DL_Codes::AC1015.

There are two APIs you will need to write a DXF file. The API in DL_WriterA offers
low level functions to write basic key/value tuples on which a DXF file is based.
Creating a valid DXF file using only these functions would be very difficult and
inconvenient. Therefore, there is a higher level API in the DL_Dxf class which
allows you to write for example a whole line without knowing the key/value tuples
that are needed for it.

The following code creates and opens a file for a DXF 2000/2002 drawing:

DL_Dxf dxf;
DL_Codes::version exportVersion = DL_Codes::AC1015;
DL_WriterA* dw = dxf.out("myfile.dxf", exportVersion);
if (dw==NULL) {
 printf("Cannot open file 'myfile.dxf' \
 for writing.");
 // abort function e.g. with return
}

Writing the DXF Header

Opening the DXF Header

The DXF header contains information about the DXF version. It has to be written
before anything else with

dxf.writeHeader(*dw);

The following list shows how a DXF header typically looks like:

Writing DXF Files

7

999
dxflib 2.0.4.8
 0
SECTION
 2
HEADER
 9
$ACADVER
 1
AC1015
 9
$HANDSEED
 5
FFFF

As you can see, the writeHeader() function does not close the header. This is
because you might want to store a set of variables into it. If you have to store
variables, you have to do it now. If not, proceed with "Closing the Header".

Storing Additional Variables

Variables in the DXF header are used to store meta data for the drawing contained
in the file. For a description of all supported variables, please refer to the DXF
documentation [DXF].

The following code snippet shows examples for storing variables of different types.
You can store as many variables as you need but you have to stick to the supported
variable names and types in order to create a valid DXF file.

// int variable:
dw->dxfString(9, "$INSUNITS");
dw->dxfInt(70, 4);
// real (double, float) variable:
dw->dxfString(9, "$DIMEXE");
dw->dxfReal(40, 1.25);
// string variable:
dw->dxfString(9, "$TEXTSTYLE");
dw->dxfString(7, "Standard");
// vector variable:
dw->dxfString(9, "$LIMMIN");
dw->dxfReal(10, 0.0);
dw->dxfReal(20, 0.0);

Closing the Header

Use the following code to close the DXF header (end the current section):

dw->sectionEnd();

Writing the Tables Section

Opening the Tables Section

The tables section of a DXF file contains some tables defining viewports,
linestyles, layers, etc.

Open the tables section with the function:

Writing DXF Files

8

dw->sectionTables();

Writing the Viewports

Viewports are not directly supported by dxflib. However, they still need to be there
in a valid DXF file. You can write the standard viewports using the function:

dxf.writeVPort(*dw);

Writing the Linetypes

Only linetypes that are actually used need to be defined in the DXF file. For
simplification, you might want to store all linetypes supported by dxflib as shown
below.

dw->tableLineTypes(25);
dxf.writeLineType(*dw, DL_LineTypeData("BYBLOCK", 0));
dxf.writeLineType(*dw, DL_LineTypeData("BYLAYER", 0));
dxf.writeLineType(*dw,
 DL_LineTypeData("CONTINUOUS", 0));
dxf.writeLineType(*dw,
 DL_LineTypeData("ACAD_ISO02W100", 0));
dxf.writeLineType(*dw,
 DL_LineTypeData("ACAD_ISO03W100", 0));
dxf.writeLineType(*dw,
 DL_LineTypeData("ACAD_ISO04W100", 0));
dxf.writeLineType(*dw,
 DL_LineTypeData("ACAD_ISO05W100", 0));
dxf.writeLineType(*dw, DL_LineTypeData("BORDER", 0));
dxf.writeLineType(*dw, DL_LineTypeData("BORDER2", 0));
dxf.writeLineType(*dw, DL_LineTypeData("BORDERX2", 0));
dxf.writeLineType(*dw, DL_LineTypeData("CENTER", 0));
dxf.writeLineType(*dw, DL_LineTypeData("CENTER2", 0));
dxf.writeLineType(*dw, DL_LineTypeData("CENTERX2", 0));
dxf.writeLineType(*dw, DL_LineTypeData("DASHDOT", 0));
dxf.writeLineType(*dw, DL_LineTypeData("DASHDOT2", 0));
dxf.writeLineType(*dw,
 DL_LineTypeData("DASHDOTX2", 0));
dxf.writeLineType(*dw, DL_LineTypeData("DASHED", 0));
dxf.writeLineType(*dw, DL_LineTypeData("DASHED2", 0));
dxf.writeLineType(*dw, DL_LineTypeData("DASHEDX2", 0));
dxf.writeLineType(*dw, DL_LineTypeData("DIVIDE", 0));
dxf.writeLineType(*dw, DL_LineTypeData("DIVIDE2", 0));
dxf.writeLineType(*dw,
 DL_LineTypeData("DIVIDEX2", 0));
dxf.writeLineType(*dw, DL_LineTypeData("DOT", 0));
dxf.writeLineType(*dw, DL_LineTypeData("DOT2", 0));
dxf.writeLineType(*dw, DL_LineTypeData("DOTX2", 0));
dw->tableEnd();

Writing the Layers

Layers are a substantial part of most DXF drawings. All layers that are used in the
drawing need to be defined in this table section. The following example code
writes three layers with names "0", "mainlayer" and "anotherlayer" to the DXF file.
Note that before writing the layers, you need to specify how many layers there are
in total. Layer "0" is the default layer. It cannot be omitted.

Writing DXF Files

9

int numberOfLayers = 3;
dw->tableLayers(numberOfLayers);

dxf.writeLayer(*dw,
 DL_LayerData("0", 0),
 DL_Attributes(
 std::string(""), // leave empty
 DL_Codes::black, // default color
 100, // default width
 "CONTINUOUS")); // default line style

dxf.writeLayer(*dw,
 DL_LayerData("mainlayer", 0),
 DL_Attributes(
 std::string(""),
 DL_Codes::red,
 100,
 "CONTINUOUS"));

dxf.writeLayer(*dw,
 DL_LayerData("anotherlayer", 0),
 DL_Attributes(
 std::string(""),
 DL_Codes::black,
 100,
 "CONTINUOUS"));

dw->tableEnd();

The default line width is given in 1/100mm. The color enum in namespace
DL_Codes defines the most common colors.

Writing Various Other Tables

These tables are also needed. For more information, please refer to the DXF
documentation [DXF].

dxf.writeStyle(*dw);
dxf.writeView(*dw);
dxf.writeUcs(*dw);

dw->tableAppid(1);
dw->tableAppidEntry(0x12);
dw->dxfString(2, "ACAD");
dw->dxfInt(70, 0);
dw->tableEnd();

Writing Dimension Styles

Dimension Styles define the look of dimensions.

dxf.writeDimStyle(*dw,
 arrowSize,
 extensionLineExtension,
 extensionLineOffset,
 dimensionGap,
 dimensionTextSize);

Writing DXF Files

10

Writing Block Records

Block records define the names of available blocks in the DXF file. The following
example declares the existence of two blocks with names "myblock1" and
"myblock2". Note that the first call is also needed. It opens the blocks table and
writes some standard blocks that might be required by the DXF version.

dxf.writeBlockRecord(*dw);
dxf.writeBlockRecord(*dw, "myblock1");
dxf.writeBlockRecord(*dw, "myblock2");
dw->tableEnd();

Ending the Tables Section
dw->sectionEnd();

Writing the Blocks Section
The blocks section defines the entities of each block.

dw->sectionBlocks();

dxf.writeBlock(*dw,
 DL_BlockData("*Model_Space", 0, 0.0, 0.0, 0.0));
dxf.writeEndBlock(*dw, "*Model_Space");

dxf.writeBlock(*dw,
 DL_BlockData("*Paper_Space", 0, 0.0, 0.0, 0.0));
dxf.writeEndBlock(*dw, "*Paper_Space");

dxf.writeBlock(*dw,
 DL_BlockData("*Paper_Space0", 0, 0.0, 0.0, 0.0));
dxf.writeEndBlock(*dw, "*Paper_Space0");

dxf.writeBlock(*dw,
 DL_BlockData("myblock1", 0, 0.0, 0.0, 0.0));
// ...
// write block entities e.g. with dxf.writeLine(), ..
// ...
dxf.writeEndBlock(*dw, "myblock1");

dxf.writeBlock(*dw,
 DL_BlockData("myblock2", 0, 0.0, 0.0, 0.0));
// ...
// write block entities e.g. with dxf.writeLine(), ..
// ...
dxf.writeEndBlock(*dw, "myblock2");

dw->sectionEnd();

Writing the Entities Section
The entities section defines the entities of the drawing. The two entities in the
following example use the attributes of their layer (256 = color by layer, -1 = line
width by layer, "BYLAYER" = line style by layer).

Writing DXF Files

11

dw->sectionEntities();

// write all your entities..
dxf.writePoint(
 *dw,
 DL_PointData(10.0,
 45.0,
 0.0),
 DL_Attributes("mainlayer", 256, -1, "BYLAYER"));

dxf.writeLine(
 *dw,
 DL_LineData(25.0, // start point
 30.0,
 0.0,
 100.0, // end point
 120.0,
 0.0),
 DL_Attributes("mainlayer", 256, -1, "BYLAYER"));

dw->sectionEnd();

Writing the Objects Section
dxf.writeObjects(*dw);
dxf.writeObjectsEnd(*dw);

Ending and Closing the File
dw->dxfEOF();
dw->close();
delete dw;

12

Chapter 5

Appendix

Bibliography
[DXF]
http://www.autodesk.com/techpubs/autocad/acad2000/dxf
Autodesk DXF Reference

[CYGWIN]
http://www.cygwin.com
cygwin - a Linux-like environment for Windows.

13

Chapter 6

Index

A
Autodesk 12

B
Block Records 10
Blocks 10

C
Compilation 3
Creation Interface 4
cygwin 12

D
Dimension Styles 9
DL_Codes 6
DL_CreationAdapter 4
DXF 2000 6
DXF 2002 6
DXF 12

E
Entities 10

H
Header 6

L
Layers 8
Linetypes 8
Linux 3

O
Output 6

P
Parsing 4

R
R12 6
Reading 4

T
Tables 7

U
Unix 3

V
Variables 7
Viewports 8

W
Windows 3
Writing 6

